
Abstract. We discuss the classical dynamics of a
CH-stretching and an OH-stretching vibration coupled
to a hindered rotation around a CC (OC) bond of a CH3

group or an OH group. Our model is based on a two-
dimensional system, in which zero angular momentum is
assumed. The model is further simpli®ed by considering
only kinetic coupling between the CH (OH) stretching
and the hindered rotation. Through numerical calcula-
tions, a new set of states is found, which originates from
n :1 resonances between the internal rotation frequency
and the stretching frequency, n being associated to the
order of symmetry (n � 3 and 6 for the cases investi-
gated). We also present a perturbative approach based
on the Lie series method, which provides insight into
these nonadiabatic states.
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1 Introduction

The vibrational spectroscopy of molecules containing
methyl groups has attracted the interest of many
authors, since the large amplitude torsional modes
around the CC bond provide a dense manifold of states
that has a great in¯uence on other vibrational states and/
or on the dynamics of the molecules. In particular we
refer here to the work of Cavagnat and coworkers [1±3],
who have discussed the signatures of torsional and
rotational CH3 (and CHD2 and, recently, CH2D) states
in the CH-stretching region of molecules such as toluene
and nitromethane (either fundamental or overtones).
Many other authors have contributed to these studies,
both experimentally and theoretically [4], with the aim
of understanding the importance of ``dark states'' in
methyl-containing molecules. It is also worthwhile
mentioning the works of Moss and coworkers [5], who

have discussed the role of internal rotation in the
acceleration of dynamical and/or internal vibrational
relaxation (IVR) processes. With the same motivations,
high-resolution and high-overtones spectroscopy of
methanol has recently been carried out [6, 7].

The quantum mechanical model that Cavagnat and
Lascombe [1] devised for the interpretation of the CH-
stretching fundamental region and successively applied
to the overtone region [2] is based on the adiabatic
separation of the stretching mode from the hindered
rotation. It has been fruitfully used to interpret vibra-
tional spectra up to the ®fth stretching overtone
�Dm � 6�, with some signi®cant but nonessential pertur-
bations coming from Fermi resonance interactions be-
tween CH stretching and HCC bending. Recent works
on methanol follow essentially the same lines [6, 7], even
though some nonadiabatic e�ects have been explicitely
pointed out by Rizzo and coworkers [7] (i.e. the depen-
dence of CH-stretching frequencies on kinetic energy
terms associated with hindered rotation). The existence
of more dramatic nonadiabatic e�ects can be expected
on the basis of general considerations. Following, for
example, Dittrich and Reuter [8], one can accept that a
rotating frame of reference (such as a rotating methyl
group) may perturb higher energy vibrations contribut-
ing a geometric (Berry) phase.

In the model we discuss here, we follow the common
assumption of zero angular momentum, as has been
done in this same context by Cavagnat and coworkers
[1±3] and by Shranz and Collins [9] for hydrogen per-
oxide type molecules. This has been done, even though
torsion±rotation coupling terms have been demonstrated
to be quite important [4, 10]. The model we treated is a
two degrees of freedom model system composed of a
Morse-type CH-stretching oscillator and a torsional/
rotational oscillator, coupled exclusively through a ki-
netic energy term. In other words we ignore the depen-
dence of the torsional hindering potential on the
stretching action or, correspondingly, of the stretching
fundamental and overtone frequencies on the torsional
angle. Such dependences have been documented in the
literature [1, 11]. We have examined this system by
classical mechanics through numerical solutions ofCorrespondence to: S. Abbate
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Hamilton equations, taking advantage especially of
graphic procedures such as PoincareÂ surfaces of section
(PSS) [12], plots of the trajectories in the con®guration
space (Lissajous-type maps), plots of the time evolutions
of the two oscillators' energies versus time, and ®nally of
power spectra of the electric dipole moment [13]. Finally,
we carried out a classical perturbation analysis [14] of
the system, by which we rationalize semi-quantitatively
the results that were obtained numerically.

2 Discussion of the model: numerical results
and perturbative approach

We have introduced the Hamiltonian function

H � �p2=2m� � hcDf1ÿ exp�ÿa�lÿ l0��g2
� p2u=2I� hc�V =2��1ÿ cos nu� ; �1�

where l is the CH (OH) bond length coordinate (l0 being
the equilibrium length), p is its conjugate momentum,
u is the hindered rotation coordinate, and pu is the
corresponding conjugate momentum. The product hc of
the Planck constant times the speed of light allows the
parameters D and V to be expressed in wavenumber
units. The dissociation constant, D, and the character-
istic parameter, a, of the Morse potential are related to
the mechanical frequency, x, and the anharmonicity
constant, v, by the relations

D � x2=4v and a �
��������������������
8p2mcv=h

p
; �2�

where m is the mass of the hydrogen atom. V is the
height of the barrier to rotation of the methyl group.

The integer n is typical of the symmetry of the in-
teraction of the methyl group with the rest of the mol-
ecule: n � 6 describes the behavior of a methyl group in
the presence of a planar group, such as a phenyl or a
nitro group, as discussed by Cavagnat and Lascombe [1],
and n � 3 is typical of methanol [6, 7]. In Eq. (1) I is the
moment of inertia for the torsion. When studying the
torsion of one group with respect to another, one should
take for I the reduced moment of inertia of the two
groups, if one disregards all other vibrational degrees of
freedom and the overall rotation. In the case of nitro-
methane and toluene (hereafter called system 1), for
motion about the NC bond or the CC bond, I is the
reduced moment of inertia of the methyl group and of
the nitro and benzyl groups, respectively; however, since
the latter groups have high moments of inertia, I is
approximated by the moment of inertia of the methyl
group, i.e.

I � ml2 sin2 h� ml20 sin
2 h� ml20 sin

2 h ; �3�
where h is the NCH angle for nitromethane and the
CCH angle for toluene. We notice that just one CH
bond of the methyl group is allowed to vary during
torsion. In the case of methanol (called system 2
hereafter) we have used the reduced moment of inertia
of the OH bond and the CH3 group, namely

I � IOHICH3
=�IOH �ICH3

� ; �4�

where ICH3
is the same as in Eq. (3) and

IOH � mlOH2 sin2 a, where a is the valence angle HOC.
When we studied the in¯uence of the CH3 hindered
rotation on CH stretchings, we allowed l to vary in
Eq. (3) and kept lOH ®xed in Eq. (4). When we studied
the in¯uence of the CH3 hindered rotation on the OH
stretching, we kept l � l0 in Eq. (3) and allowed lOH to
vary in Eq. (4). The kinetic energy term �p2u=2I� is the
approximation of the expression of the kinetic energy by
the usual G-matrix formalism [15] under the hypothesis
that mH � mC or mO.

In what follows we used the values h � 109:47�
and a � 105�;m � 1 amu; l0 � 1 AÊ , and lOH � 1 AÊ . Of
course, a di�erent choice of the masses allows CHD2 or
CH2D to be treated as well. To deal with toluene and
nitromethane, we used x � 3000 cmÿ1 and v � 60 cmÿ1.
All these values are in the range of the true experimental
values, even though they are not exact; however, they
account for the quality of the phenomena observed.
Moreover we do not rule out the existence of coupling
terms in the potential energy, rather we want to em-
phasize the importance of some nonadiabatic e�ect due
to velocity terms, in a way that was not explicitly con-
sidered by Cavagnat and coworkers [1±3] in CHD2 (we
will see later that their assumption is correct for CHD2

but not for CH3). We have tried three values for the
barrier height, V , namely V � 5 cmÿ1 (close to that of
nitromethane and toluene) [1], V � 50 cmÿ1 (close to
that of 2,6-di¯uorotoluene) [16], and V � 200 cmÿ1 (the
closest instance that we may cite is that of a-picoline
reported by Cavagnat and Lautie [17]). For methanol,
instead, we studied both the OH-stretching region and
the CH-stretching region. In the former case we used
x0 � 3811:2 cmÿ1 and v � 86:2 cmÿ1 [18]; in the latter
case we used x0 � 3000 cmÿ1 and v � 60 cmÿ1. In both
cases V � 363 cmÿ1 was assumed from the papers of
Rizzo and coworkers [7].

2.1 Numerical calculations

In order to study the transition 0! m, for the CH
stretching in both system 1 and in system 2, we studied
all the PSS obtained by numerical integration of the
classical equations of motion based on the fourth-order
Runge±Kutta algorithm. The following values of the
total energy, E, were considered: 2940, 4365, 5760, 7125,
8460, 9765, 11040, 12285, and 13500 cmÿ1. Instead, in
order to describe the OH-stretching region for methanol
(in system 2), we used the following values of E: 3725,
5523.3, 7277.60, 8989.25, 10657.80, 12283.25, 13865.60,
15404.85, and 16901:00 cmÿ1. Such values are obtained
by substituting m� � �m=2�, from m � 1 to m � 9, into the
relation Em � x�m� � 1=2� ÿ v�m� � 1=2�2 as prescribed
by the correspondence principle [19]: this principle states
that the classical trajectory labeled by the average action
value m=2 corresponds to the quantum transition 0! m.

We report in Fig. 1 the results for the PSS for system
1 at m � 7�E � 11040 cmÿ1� for V � 200 and V �
50 cmÿ1 for the two phase-space hyperplanes �u; pu� and
�l; p�. The PSS in the �u; pu� plane is obtained with
condition l � l0; p > 0; the second one, in the �l; p�
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plane, with the condition u � 0 and pu > 0. The total
integration time is of the order of 15,000 fs for each PSS
curve. The di�erent curves correspond to di�erent initial
values of the stretching and pseudorotational energies,
El and Eu, respectively de®ned as El � �1=hc��p2=2m��
Df1ÿ exp�ÿa�lÿ l0��g2 and Eu � �1=hc�p2u=2I� �V =2��1ÿ cos 6u� equally spaced in �El ÿ Eu�. From the top
PSS one may notice three types of curves, namely closed
curves close to pu � 0, corresponding to librational or
torsional oscillation of the methyl group, open curves,
corresponding to rotational states of the methyl group,
and, ®nally, sextuples of closed curves embedded in the
methyl group rotational states. As it will be clear from
the next paragraph, these curves correspond to 6:1 re-
sonances. Other closed curves in the rotational ensemble
can be found, but are hard to see on the scale of Fig. 1.
Correspondingly, in the �l; pl� plane there is no quali-
tative distinction between librational and rotational
states; the former are the outer PSS curves, the latter the
inner ones (bottom PSSs in Fig. 1). Instead, the third
type of PSS curve is markedly di�erent and corresponds
to the evident banana-shaped curves. Such a qualitative
aspect of the PSS ®gures is also found for
m � 6�E � 9765 cmÿ1�. The same qualitative aspect of
the PSS is also found in methanol: we present in Fig. 2
the PSS relative to the �u; pu� plane for the OH
stretching (top) at m � 9�E � 16500 cmÿ1� and for the
CH stretching at m � 7�E � 11040 cmÿ1�. In these cases

the most prominent resonances are 3:1, but 6:1, 9:1, and
9:2 resonances are also observed.

Certainly the most intriguing types of motion are the
resonant ones: it turns out that they are still rotational
states of the methyl (or OH) group with some peculiar-
ities that are not present in the other rotational states.
Considering system 1, we see that these new states ap-
pear in Fig. 1 for the initial condition El � 2520 cmÿ1
and Eu � 8520 cmÿ1. Correspondingly, if one assumes
that the energy Eu is just that of a free rotator, namely
Eu � �4p2c=h��1=2�I0x2

R, (I0 is the moment of inertia
at the stretching equilibrium, namely I0 � 3ml20sin

2h�
and if one calculates the stretching frequency from
xS�El� � �x2

0 ÿ 4vEl��1=2�, which is valid for the Morse
potential, one ®nds that xR � 463:6 cmÿ1 and
xS � 2862 cmÿ1. This demonstrates that they are close
to 6:1 resonant states. Such resonances originate from a
matching of the stretching frequency, xS, which is a
decreasing function of the energy, with 6 times the ro-
tation frequency, xR, which is an increasing function of
the energy. The lowest energy at which these resonant
modes are observed is that corresponding to the transi-
tion Dm � 6. Indeed in the approximation of separate
degrees of freedom (so that the two expressions of El and
Eu just given are valid) the 6:1 resonance ®rst appears
when the total energy is concentrated on
the pseudorotational degree of freedom, u, and it is
enough to give a frequency xR � 500 cmÿ1, so that

Fig. 1. PoincareÂ surfaces of
section (PSS) obtained for the
value E � 11040 cmÿ1 of the
total energy, corresponding to
the transition Dm � 7 for the
CH stretching of system 1. The
PSS are given in the �u; pu�
plane (top) and the �l; p� plane
(bottom). The results for the
barrier highet V � 200 cmÿ1 are
given on the left and the results
for V � 50 cmÿ1 are given on
the right. In each plot the 22
PSS curves di�er for constant
values in the initial energy dif-
ference El ÿ Eu (see text).
The pseudoangular momentum
is in dimensionless units, the
momentum conjugated to the
stretching is in units of
u. = amu AÊ �fs�ÿ1
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xR � �1=6�x0. This happens when the total energy is
9884 cmÿ1. Integrating the exact Hamiltonian, we ®nd
the resonance at a slightly lower energy. At this point it
is worthwhile pointing out that due to the dependence of
xR on I0, xR decreases with increasing I0 at ®xed
energy: this is the reason why for CHD2 and CH2D such
resonances are not found for the values of m investigated
for system 1.

In the above considerations no use has been made of
the parameter V . The existence of the resonant modes
and the position of the stable and unstable ®xed points
corresponding to the simply periodic trajectories of the
exact resonant condition are independent of V . We ver-
i®ed numerically that the resonances are still present also
for V � 5 cmÿ1, even though they are hard to notice on
the scale of Fig. 1. V determines just the width of the
resonance region in phase space. Corresponding to the
6:1 resonance, the stable ®xed points are found precisely
at �u � ÿ18:3� � k � 60�, k � 0;�1;�2; 3; pu � 36:92�
and at �l � 1:2 AÊ , p � 0� and the unstable ones are found

at �u � 11:7� � k � 60�; k � 0;�1;�2; 3; pu � 36:92� and
at �l � 0:9 AÊ , p � 0� (notice that the values of pu are in
dimensionless units, that is to say in units of 2, for better
comparison with the perturbative theory described later).
Above the threshold value of m�m � 6� where the reso-
nances are found, the values of the ®xed points are in-
dependent of the overtone order, m, and this further
con®rms the above interpretation. Analogous results are
found for methanol (Fig. 2): the 3:1 resonances start
from m � 9 for the OH stretching and m � 7 for the
CH stretching. The stable and unstable ®xed points are
found at �u � ÿ40:0� � k � 120�; k � 0;�1; pu � 25:02�
and �u � �20:0� � k � 120�; k � 0;�1; pu � 25:02�, re-
spectively, for the OH stretching and at �u � ÿ40:0��
k � 120�; k � 0; �1; pu � 19:83� and at �u � �20:0� � k�
120�; k � 0; �1; pu � 19:83�, respectively, for the CH
stretching. Finally, in Fig. 3 we give the plots of El and Eu
versus time corresponding to open and closed PSS tra-
jectories close to the stable 6:1 ®xed point for system 1 for
V � 200 cmÿ1. One observes that the energies undergo
two types of oscillations: one is fast and one is slow. The
characteristic times for the former type of energy oscil-
lations coincide with the CH-stretching periods and are
of the order of 10 fs. The latter type is a kind modulation
of the energy exchanges between stretching and hindered
rotation: its characteristic time is about 200 fs for the
trajectories A andD in Fig. 3 and about 1000 fs for curve
B and its analogs, and is in®nity for curve C.

The same characteristics can be seen, in an even more
detailed way, by looking at the Fourier power spectra of
the trajectories A, B, C, and D of Fig. 3. By power
spectrum we mean the following function of the
frequencies [13]:

S�x� � jx�x�j2 � jy�x�j2 � jz�x�j2 ;

where

x�x� � lim
T!1
�1=2T �

ZT

ÿT

l�t� sin h cosu�t� exp�ÿixt�dt

y�x� � lim
T!1
�1=2T �

ZT

ÿT

l�t� sin h sinu�t� exp�ÿixt�dt

z�x� � lim
T!1
�1=2T �

ZT

ÿT

l�t� cos h exp�ÿixt�dt

We report the results for the four trajectories A, B, C,
and D of Fig. 3 in Fig. 4. The integration times were
T � 32768fs with a 0.05fs step, when solving the
Hamilton equations of motion, and the Fourier analysis
was conducted by a Fast-Fourier-transform based
computer program over the same time, T , using a step
size of 1 fs. In Fig. 4 we have reported the results for the
three spectral regions with the major Fourier compo-
nents: between them there is no component above the
noise of the calculations, and the stretching overtone
regions calculated beyond them are not reported for
reasons of conciseness. Looking at the rotational
fundamental region (the four plots in the ®rst column),

Fig. 2. PSS for system 2 obtained for the value E � 16500 cmÿ1 of
the total energy, corresponding to the transition Dm � 9 for the OH
stretching (top) and for the value E � 11040 cmÿ1, corresponding to
the transition Dm � 7 for the CH stretching (bottom). The barrier
height to rotation is V � 363 cmÿ1. In each plot the 21 PSS curves
di�er for constant values in the initial energy di�erence El ÿ Eu (see
text). The pseudoangular momentum is in dimensionless units
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one sees that trajectories A and D show an intense line
at 491 cmÿ1 and 421 cmÿ1, respectively; for trajectories
B and C this line is at 453 cmÿ1 and is in exact 6:1
resonance with the CH-stretching central line at
2717 cmÿ1 (second column of Fig. 4). All the aforemen-
tioned lines correspond to the rotation frequency xR.
Close to the line at xR, for trajectory B there are
two quite evident components at xR � xM, with
xM � 33 cmÿ1: the latter corresponds to the long-term
modulation observed in the plot of energy versus time in
Fig. 3. The shorter-time modulations observed for
trajectories A and D produce lines at about 250 cmÿ1
with intensities too low to be observed in this and the
following regions. Going next to the CH-stretching
fundamental region, for trajectories A, C, and D three
lines are observed, the central one corresponding to the
pure CH stretching at xS, since the z�x� component
contributes. The two side components are found at
xS � xR and are generated by jx�x�j2 � jy�x�j2; the
intensity ratio of the central component to the sum of
the side components is cos2 h= sin2 h; for the exact
resonant trajectory C the two side components have
equal intensity. For B-type trajectories the long-term
modulation produces further side lines at xS � xR� xM.
Finally, in the ®rst CH-stretching overtone region one
observes for all trajectories three lines at 2xS and
2xS � xR; for trajectory B satellite lines are observed
that di�er in frequency from those just mentioned by
�nxM, where n is an integer. The same phenomena are
observed for higher CH-stretching overtone regions, that

we do not report here. The consideration of the Fourier
power spectrum is useful for further elucidating the
dynamical behavior and may help to give an idea of the
spectroscopic manifestation of the resonant modes that
we have found; however, we feel that it is premature to
dwell on this point now.

2.2 Perturbation treatment

We wish to discuss here a perturbative treatment, by
which the main ®ndings from the numerical calculations
expounded in Sect. 2.1 are rationalized. In the following,
we discuss the Hamiltonian of system 1: system 2 can be
treated analogously. We ®rst made an approximation
to the Hamiltonian function (Eq. 1) by substituting
l � l0 � �lÿ l0� into Eq. (3), developing �l=I� in a
Taylor series, and keeping the lowest term in �lÿ l0�.1
We thus obtained the following partitioning of the
Hamiltonian function:

H � H0 � H1 � H2 ; �5�
where

H0 � �p2=2m� � hcDf1ÿ exp�ÿa�lÿ l0��g2 � p2u=2I0

�6�
H1 � ÿ�2=3��p2u=2I0���lÿ l0�=l0� �7�
H2 � hc�V =2��1ÿ cos 6u� �8�

Fig. 3. Portion of the PSS of Fig. 1 top left close to the 6:1
resonance �V � 200 cmÿ1�. Time dependence of rotational and
stretching energies El and Eu corresponding to the marked PSS
curves. In each plot El versus time always corresponds to the lower
trace; Eu versus time always corresponds to the upper trace

1 Developing �1=I� in a power series of �Dl=l0�, one obtains
�p2u=2I0��1ÿ �2Dl=3l0� � �Dl=3l0�2� for the mass values used for
CH3. In the following we stopped at the linear power of �Dl=l0�
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H0 is integrable and can be expressed in terms of the
dimensionless actions of the free rotator �pu� and the
Morse oscillator �J�, i.e.
H0 � �B=3�p2

u � �x0 ÿ vJ�J ; �9�
where B is the CH-bond rotational constant in wave-
number units for rotations around CX, i.e.
B � �3h=8p2cI0�, and for the parameters adopted here
its value is 18:97 cmÿ1. The angle coordinates conjugated
to pu and J are u and U (the latter denotes the phase of
the stretching coordinates l) and do not appear in H0.
The frequencies of the separated rotational and stretch-
ing motions can be calculated from the relations [12]

xR�pu� � �@H0=@pu� � �2B=3�pu �10�
xS�J� � �@H0=@J� � x0 ÿ 2vJ �11�
It is convenient to write H1 in terms of action/angle
variables; we veri®ed that it is not necessary to use the

Morse actions and angles [20, 21], but just the corre-
sponding harmonic quantities [12]. In this way (working
with dimensionless action, J , and wavenumber units
for x0)

�lÿ l0� �
������������������������������
�hJ=2p2mcx0�

q
sinU � j

���
J
p

sinU �12�
(for the present case j � 0:15 AÊ ).

By substituting into Eq. (7), we obtain

H1 � ÿAp2
u

���
J
p

sinU ;

where A � �2=9�B�j=l0� � 0:632 cmÿ1:
The three terms in Eq. (5), that have been rewritten in

terms of action/angle variables, have di�erent impor-
tance in di�erent regimes. H2 is responsible for librations
of the angle u; the magnitude of V gives the portion
of phase space occupied by librational modes (the six
curves at low pu in Fig. 1). The regime of these modes is
accounted for by just �H0 � H2�, which is separable. We

Fig. 4. Fourier power spectra
S�x� of the trajectories A;B;C;
and D presented in Fig. 3. Only
the fundamental regions for the
pseudorotation and stretching
and the ®rst overtone of the
stretching are presented. The
units for the ordinate axis are
arbitrary, of course the relative
values between di�erent spec-
tral regions are well de®ned
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are going to present a perturbative treatment for the
nonseparable Hamiltonian �H0 � H1 � H2�, with the aim
of justifying locally the rotational regime, in the region
which comprises the 6:1 resonance. The perturbative
treatment allows �H0 � H1 � H2� to be transformed to a
Hamiltonian, Z, depending on just one angle; the
validity of such a perturbative approach cannot be ex-
tended globally to the whole phase space. The pertur-
bation scheme we apply is based on the Lie series
[12, 14]: we rewrite the Hamiltonian function (Eq. 5) as
follows:

H�u;U; pu; J� � h0�pu; J� � ef �u;U; pu; J� ; �13�
where

h0�pu; J� � x0J � �p2u=2I0� �14�
is the unperturbed Hamiltonian and

ef �u;U; pu; J� � ÿvJ 2 � �V =2��1ÿ cos 6u�
ÿA

���
J
p

p2
u sinU �15�

is the perturbation term. In the hypothesis of high pu all
three perturbative terms are equally important. Follow-
ing Ref. [14], we look for a canonical transformation:
�p; q� ! �p0; q0� of the form

�p; q� � exp�eLw��p0; q0� � �p0; q0� � efw; �p0; q0�g
� �e2=2�fw; fw; �p0; q0�gg ; �16�

where the symbol f. . . ; . . .g stands for Poisson brackets
[12, 14]. The Hamiltonian function H of Eq. (13)
transforms to

H 0 � exp�eLw�H
� H � efw;Hg � �e2=2�fw; fw;Hgg �17�

with truncation at the second order in e.
Substituting Eq. (13) for H , one obtains

H 0 � h0 � ef � efw; h0g � e2�fw; f g � 1
2 fw; fw; h0gg� :

�18�
At this point one has to determine the generating
function w in such a way that the lowest-order term in e
depends on actions only. This is possible because no
resonance appears at this order. One has

f � fw; h0g � Z�pu; J� : �19�
w is then expanded in a Fourier series, i.e.

w �
X

jk

cjk�pu; J� exp�i�jU� ku�� ; �20�

where j and k run over the entire set of relative integer
numbers. Substituting Eq. (20) into Eq. (19), one obtains

w � ÿi�V I0=24pu��ei6u ÿ eÿi6u�
ÿ �A

���
J
p

=2x0�p2u�eiU � eÿiU� : �21�
Applying Eq. (21) in the Poisson brackets required by
the next order in e of Eq. (18), one obtains the following
equations for H 0:

H 0 � h0�pu; J� � e2f 0�u;U; pu; J� ; �22�

where

h0�pu; J� � h0�pu; J� � eZ�pu; J� � x0J

� �p2u=2I0� ÿ vJ2 � �V =2� �23�
and

e2f 0�u;U; pu; J� � ÿ�A2p4u=4x0� � �V 2I0=16p2
u�

ÿ �V 2I0=32p2
u��ei12u � eÿi12u�

ÿ �ivA�J�3=2p2u=x0��eiU ÿ eÿiU�
ÿ �iV A

���
J
p

=2��ÿ�I0=4� � �3pu=2x0��
� �ei�6u�U� ÿ eÿi�6u�U��
ÿ �iV A

���
J
p

=2���J0=4� � �3pu=2x0��
� �ei�6uÿU� ÿ eÿi�6uÿU�� : �24�

Next, we seek another canonical transformation w0 to
coordinates and momenta �p00; q00� such that the trans-
formed Hamiltonian H 00 is of the form

H 00 � h0 � e2�f 0 � fw0; h0g� : �25�
As done previously for w, we require that the new
generating function w0 be expandable in a Fourier series

w0 �
X

jk

c0jk�pu; J� exp�i�ju� kU�� �26�

(j; k run over all relative integer numbers). Again, we
require that

f 0 � fw0; h0g � Z 0 : �27�
Notice that Z 0 can be imposed to be dependent on
actions only, if no resonance appears. Indeed the series

fw0; h0g � ÿi
X

jk

c0jk exp�i�ju� kU��

� �j�pu=I0� � k�x0 ÿ 2vJ��
� ÿi

X
jk

c0jk exp�i�ju� kU��

� �jxR�pu� � kxS�J�� �28�
shows zero factors in correspondence 6xR � xS, namely
for j � 6 and k � ÿ1. For this reason one must set the
coe�cients c0ÿ61 and c061 equal to zero. From Eq. (27) we
determine Z 0 from f 0 [14]: since we are only interested in
investigating the properties of the transformed Hamil-
tonian close to the resonance, we do not report explicitly
the coe�cients c0jk that we have calculated in view
of studying the other resonances of Figs. 1 and 2. In
conclusion we obtain

H 00 �x0J � �p2u=2I0� ÿ vJ2 � �V =2� ÿ �A2p4u=4x0�
� �V 2I0=16p2

u�
� �V A

���
J
p
���I0=4� � �3pu=2x0�� sin�6uÿ U� �29�

Finally we make the following canonical transformation
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hR � 6uÿ U IR � pu=6 h � U I � J � �pu=6�
�30�

that is commonplace in the instance of resonances [12].
From Eq. (29) we obtain

H 00�I ; IR; hR� �x0�I ÿ IR� ÿ v�I ÿ IR�2 � �V =2�
� 18I2R=I0 ÿ �A264I4R=4x0�
� �V 2I0=576I2R�
� �V A

����������������
�I ÿ IR�

p
�

� ��I0=4� � �9IR=x0�� sin hR : �31�
A systematic analytical study of Eq. (31) is hard and is
not terribly rewarding; however, a few qualitative and
®rm conclusions are possible:

1. Equation (31) is the sum of an angle-independent
part and of an oscillating part: the relative weight of the
latter with respect to the former determines whether
or not there is the resonance we encountered in the
numerical analysis.

2. The ®xed points of H 00 (when the resonance is
present) are for hR � ��p=2�, which is quite close to
what we have found numerically. Indeed, from Eq. (30),
setting U � 0, one obtains u � ��p=12�, which is very
close to the result of Fig. 1; instead, setting u � 0, one
obtains U � ��p=2�, namely lÿ l0 of Eq. (12) at the
minimum and maximum value, respectively. To be more
precise though, one should remember that the conju-
gated coordinates and momenta to be used in Eq. (30)
are not the original ones: consequently, in order to make
a comparison with the numerical experiments, one must
transform twice the canonical coordinates through
Eq. (16) with the Lie series transformation generated by
w (Eq. 21) and w0 (Eq. 26). Up to the ®rst order in e, the
transformation for the u coordinate reads

u � u00 � �V I0=12p2u00 � sin 6u00

� 2�A
�����
J 00
p

=x0�pu00 cosU00 ; �32�
where we denote the transformed coordinates and
momenta by use of the second primes. Substituting in
Eq. (32) the values for u00 and pu00 of the ®xed points,
that have been obtained graphically, as described later
one obtains u � ÿ15:5� and u � �14:5�, which is even
closer to the numerical experiment.

In order to study the stability of the ®xed points and
to investigate whether Eq. (31) is quantitatively in good
correspondence with the numerical experiments, we have
plotted the level curves H 00�I ; IR; hR� � E at ®xed values
for I , in the ranges IR 2 �1; I� and hR 2 �ÿp;�p�. I has
the meaning of the sum of the vibrational and pseudo-
rotational actions (the latter one divided by 6). In order
to seek a correspondence with the calculations of Fig. 1,
we have determined J and pu at the lowest order of
approximation from a slightly modi®ed version of
Eq. (14) by setting h0 � E, namely

E � x0J ÿ vJ 2 � �p2
u=2I0� : �33�

Corresponding to the values E=2940, 4365, 5760, 7125,
8460, 9765, 11040, and 12285 cmÿ1, we obtain the

maximum value for J , i.e. J � 1, 1.5, 2, 2.5, 3, 3.5, 4,
and 4.5 (for pu � 0) and the maximum value for pu,
i.e. pu = 21.56, 26.27, 30,18, 33.56, 36.57, 39.29, 41.78,
and 44.07 (for J � 0), respectively, in dimensionless
units. Such values correspond to the transition orders
Dm � 1; 2; 3; 4; 5; 6; 7; 8. In Fig. 5 we report the plots for
I � 5:59 (Dm � 4) (top) and I � 6:96 (Dm � 7) (bottom)
which can be obtained by substituting J � 0 and
pu � 33:56 and 41.78, respectively, in Eq. (30). Indeed
such an approximation is permissible since the 6:1
resonances are found for high values of the pseudoro-
tational action pu. We see that in the ®rst case only open
curves are present, whereas in the second case closed
curves also appear centered at hR � ÿ�p=2�. For open
curves hR, given by Eq. (30), can vary from ÿp to p.

Fig. 5. Contour plots for the transformed Hamiltonian
H 00�I ; IR; hR� obtained by the perturbative treatment presented in
the text. The plots are in the �IR; hR� plane at a ®xed value for I.
A limited portion is shown in the ordinate axis. Two plots are
shown corresponding to the two values I � 5:59 (top) and I � 6:96
(bottom). IR and I are in dimensionless units
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Namely, there is no relation between the phase of the
stretching vibration U and the phase of the pseudoro-
tation u: consequently these curves correspond to the
usual ``free'' rotations. On the other hand, for closed
curves hR varies in a limited interval, giving rise to a
phase locking of stretching and rotation; even though u
varies between ÿp and p, meaning that we are still in the
presence of a full rotation. In the largest closed curve
there is a strong oscillation in IR, i.e. in pu according
to Eq. (30) meaning that the rotational energy, Eu,
undergoes a periodic variation, with a long period, as
observed in Fig. 3B (and as con®rmed by the Fourier
cross spectrum in Fig. 4B). The perturbative treatment is
consistent with the numerical results also in that the
stable ®xed point is predicted at hR � ÿ�p=2�, while the
unstable one is predicted at hR � ��p=2�. Furthermore
the values for resonant action, IR, are close to the
maximum allowed value, i.e. to I . Indeed by the
perturbative treatment we found that IR at both ®xed
points is 6.6 in dimensionless units for Dm � 7 (Fig. 5,
bottom). This value compares well with the value for
pu=6 found numerically, namely 6.15; however, by the
perturbative treatment two slightly di�erent values for
IR are found at the stable and unstable ®xed points,
whereas just one is found by the numerical experiment.
Also, the transition from the regime described in the top
part of Fig. 5 to the regime described in the bottom part
of Fig. 5 is found at Dm � 6. This is not too far from
what has been found numerically.

In conclusion we feel that a qualitatively general
agreement and a quantitative agreement of the order of
90% has been achieved by the perturbative treatment
used here. We have pointed out several instances where
approximations have been made and better quantitative
agreement may be reached, for example, by using Morse
actions and angles instead of harmonic ones and also by
making a more accurate expansion of 1=I.1;2 More
importantly, we feel that the above perturbative treat-
ment can help considerably to understand the case of
methanol, with due changes in resonance terms (see
Fig. 2). This is trivially true for the resonance xS � 3xR

at high Dm, but also for the resonances at various orders
showing up at much lower Dm and persisting (see Fig. 2
again) at higher Dm.

3 Conclusions

We have investigated the vibrational classical dynamics
of a librating/rotating methyl group with just two
degrees of freedom: the hindered rotation u and the
stretching lÿ l0 in the methyl group (and in the oxydril
group in the case of methanol) for typical energies of
spectroscopic interest. We neglected any in¯uence from
overall molecular rotations. The assumed coupling
between the two vibrational coordinates is just in the

kinetic energy and is usually given little attention. We
have found that this coupling can give rise to interesting
features in the dynamics: besides the torsional and
rotational modes, there is a third type of mode, namely
resonant rotational modes. The two former ones are
adiabatic, namely the angle u coordinate is qualitatively
decoupled from the other vibrational motions. Instead,
the resonant rotational states are evidently nonadiabatic.
These modes arise from the synchronization that takes
place between stretching vibrations and rotations, orig-
inating from the strong centrifugal force generated by
the rapid rotation of the methyl or the oxydril group. We
think that these modes may have some in¯uence on the
CH-overtone spectra, since their Fourier spectrum is
markedly di�erent from that of ``neighboring'' rotation-
al states. The perturbation treatment provided in this
work will help in this speci®c respect, since it can provide
the invariant actions of the perturbed motions, which
are relevant for the semiclassical quantization of the new
actions [22]. Moreover it well describes the phase locking
between stretching and hindered rotation.

It appears at the moment that these ``new'' modes are
predicted for high values of the hindered rotational ac-
tion and, consequently, for high quantum numbers: in-
deed we have evaluated that for a toluene-type molecule
it is of the order of 36, while for methanol it is either of
the order of 25 or 20. Furthermore, we have observed
higher-order resonances for energies corresponding to
lower hindered rotation quantum number. The latter
modes are in an accessible spectroscopic range and we
have started to study them by the same approach ex-
pounded here. In particular the perturbative treatment
will be applied to higher orders in order to study all
possible resonances in methanol and to a modi®ed
Hamiltonian contemplating also an interaction term in
the potential energy between the two degrees of freedom,
as strongly suggested in the literature [1±3, 6, 7].
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